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♦ MicroBooNE and LArTPC Technology

♦ Space Charge Effect (SCE) in LArTPC's

♦ Calibration of SCE and First Results with Toy MC
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♦ MicroBooNE (“Micro Booster 
Neutrino Experiment”):  LArTPC 
(Liquid Argon Time Projection 
Chamber) at Fermilab

• 170-ton total mass (80-ton active 
mass), 470 m baseline

• Receives Booster Neutrino Beam 
(BNB) and Main Injector neutrino 
beam (NuMI) – νμ/νμ sources

• TPC:  10.3 m long, 2.3 m tall, 2.5 m 
wide

• Ionization signals collected via three 
anode wire planes (8000+ channels)

• PMT system for light collection

• Chief physics goal:  confirm or rule 
out sterile neutrino hypothesis from 
LSND and MiniBooNE low energy 
νe/νe excesses

MicroBooNE 
Cryostat
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♦ Reconstruction of neutrino-Ar interaction events with LArTPC
• 8000+ readout channels via three wire planes at anode

• Two induction planes (“U” and “V”) and one collection plane (“Y”)

• Provides millimeter-scale resolution and sub-microsecond-scale timing

• Combine information from three planes to reconstruct particles in 3D

• Assumes uniform drift E field (500 V/cm) for reconstructing 
drift coordinate (“X”) of ionization electron signals

X (Drift)

Y (Up)
Z (Beam)

Cathode

Anode
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♦ Space charge:  excess electric charge (slow-moving argon 
ions) distributed over region of space due to ionizing cosmic 
muons passing through the liquid argon
• Modifies E field in TPC, thus track/shower reconstruction

• Affects LAr neutrino experiments on surface, such as MicroBooNE
– Magnitude of distortion scales with D3, E-1.7

B. Yu
K. McDonald

Approximation!

Ion Charge Density [nC/m3]

No Drift!
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♦ Space charge:  excess electric charge (slow-moving argon 
ions) distributed over region of space due to ionizing cosmic 
muons passing through the liquid argon
• Modifies E field in TPC, thus track/shower reconstruction

• Affects LAr neutrino experiments on surface, such as MicroBooNE
– Magnitude of distortion scales with D3, E-1.7

K. McDonald

MicroBooNE:

    D = 2.56 m

    E = 500 V/cm

    K = 2 · 10-10 C/m3/s
No Drift!
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♦ Visualization of E field in central Z slice
• Charge deposition rate same throughout TPC

• No liquid argon flow
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♦ Two distinct effects on reconstructed tracks:
• Reconstructed track shortens laterally (looks rotated)

• Reconstructed track bows toward cathode (greater effect near 
center of detector)

♦ Can obtain straight track (or multiple-scattering track) by 
applying corrections derived from data-driven calibration
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Sample “Cosmic Event”Sample “Cosmic Event”

Nominal Drift 
Field

500 V/cm

Half Drift
Field

250 V/cm

Without SCE

vs.

With SCE

X (Drift)

Y (Up)

Z (Beam)

    Simulation:

1.  Fourier Series 
solution to BVP for 
E field on 3D grid

2.  Interpolation 
between grid points

3.  Ray-tracing to 
obtain distortions
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♦ UV laser system installed at each end 
(in beam direction) of MicroBooNE TPC

♦ Use for calibration of SCE
• Know laser “true” tracks

• But limited TPC coverage – see below

Z
e

n
it

h
 a

x
is

 (
Y

)

Beam axis (Z)

D
ri

ft
 a

x
is

 (
X

)

Beam axis (Z)

Need a Way to 
Fill in Gaps in 

Calibration Map!



13

Calibration SchemeCalibration Scheme

Anode

TPC
Face

TPC
FaceP

Update Correction to Point P

“True” Track 
(no SCE)

Reconstructed
Track (with SCE)

♦ Fill in displacement correction map 
gaps using cosmic muons

• Approximately 10 cosmics per event 
time window (4.8 ms)

♦ Correction from center of line 
connecting points of closest 
approach (separation d) between 
two tracks (before and after SCE)

• Can use scheme for both laser and 
cosmic muon tracks

• Get “true” muon track from PCA fit to 
already-calibrated points 

• Weight each contribution by e-d/D 
(where D is tunable parameter)

• Use only high-momentum 
cosmics to minimize MCS effects
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♦ Interpolate between gaps in correction map using 3D Delaunay 
triangulation (CGAL library)

♦

♦ Two version of results (use 10,000 high-momentum cosmics):
• Ideal Case:  assume perfect knowledge of cosmic muon “true” tracks 

– Results shown today (others preliminary)

• Realistic Case:  approximate cosmic muon “true” track from PCA fits 
using already-calibrated points (2+) from laser correction

Interpolate



Results:  Results:  ΔΔX (Z = 5.0 m)X (Z = 5.0 m)
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Simulation Calibration

Difference
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Simulation Calibration
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Simulation Calibration
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♦ First space charge effect calibration results for MicroBooNE 
look promising
• Laser system alone provides ΔX and ΔY near center of TPC

• Cosmic muons fill in entire TPC and improve ΔZ estimate

• Studies of “Realistic Case” in progress

♦ Current studies make use of toy MC – commissioning at 
MicroBooNE ongoing and will have data for calibration very 
soon!

♦ Many thanks to:
• Christoph Rudolf von Rohr  (Uni. Bern graduate student)

• Matthias Luthi  (Uni. Bern graduate student)

• Navneet “Vik” Dhaliwal  (BNL undergraduate summer 
student)
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Advantages of LArTPCAdvantages of LArTPC
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J. Asaadi



LarTPC Event ReconstructionLarTPC Event Reconstruction
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Combine different wire planes 
together to get 3D information
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♦ SpaCE:  Space Charge Estimator – SCE simulation package 
written by M. Mooney

♦ Code written in C++ with ROOT/ALGLIB libraries

♦ Primary features:
• Obtain E fields analytically (on 3D grid) via Fourier series

• Use interpolation scheme (RBF – radial basis functions) to 
obtain E fields in between solution points on grid

• Generate tracks in volume – line of uniformly-spaced points

• Employ ray-tracing to “read out” reconstructed {x,y,z} point for 
each track point – RKF45 method

♦ Results presented here assume uniform space charge 
deposition without liquid argon flow
• Can also use arbitrary charge distribution as input
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E Field Calc. UncertaintyE Field Calc. Uncertainty
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♦ Can use cosmic muon tracks for calibration
• Possibly sample smaller time scales more relevant for a particular neutrino-

crossing time slice

• Minimally: data-driven cross-check against laser system calibration

♦ Smoking-gun test:  see lateral charge displacement at track 
ends of non-contained cosmic muons  space charge effect!→
• No timing offset at transverse detector faces (no E

x
 distortions)

• Most obvious feature of space charge effect

Drift

Δy
edge

Δy
edge Anode
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Using MCS to Measure pUsing MCS to Measure p
tracktrack

♦ One idea: use angular 
deflections of track due to 
Multiple Coulomb Scattering 
(MCS) in order to find p

track

♦ Need to see how SCE impacts 
this measurement!

Idea:  RMS of Δθ distribution  p→
track 

(“p
RECO

”)

Fully-contained tracks
Here:  p

CAL 
= p

TRUE

L. Kalousis



Calibration Scheme:  SCTCalibration Scheme:  SCT
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♦ Fill in displacement correction maps (in between where laser 
system can reach) using cosmic muons

• Approximately 10 cosmics per event time window (4.8 ms)

♦ Algorithm:  Space Charge Tomography (SCT)

♦ Step definitions:
• Use (near) laser crossings – “X”

• Update cosmic muon “truth track” using fit (PCA) to corrected track 
points that pass through previously-calibrated regions – “T”

• Use (near) crossings of single laser track and single cosmic track – “L”

• Use (near) crossings of two cosmic muons – “μ”

♦ Progression of SCT steps:  X  T  L  T  → → → → μ  T  L  …→ → →
• Obtain cosmic muon t

0
 from PMT system

• With high enough statistics, multiple-scattering averaged out (also 
use high-momentum tracks to minimize effect)
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SCT “SCT “μμ” Step” Step

Anode

TPC
Face

TPC
Face

P

Update Correction to Point P

“True”
Muon Track

Reconstructed
Muon Track

♦ Calibration scheme details 
(using “μ” step as example):
• Correction from center of line 

connecting points of closest 
approach (separation d) 
between two tracks (before 
and after SCE)

• Get “true” muon track from 
“T” step (see previous slide)

• Weight each contribution by 
factor e-d/D (D is tunable 
parameter)

• Use only high-momentum 
cosmics to minimize MCS 
effects



Distance of Closest ApproachDistance of Closest Approach
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N. Dhaliwal



Laser-Only Results:  Laser-Only Results:  ΔΔX (Z = 5.0 m)X (Z = 5.0 m)
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Simulation Calibration
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Algorithm:

    C. Rudolf von Rohr
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Simulation Calibration

Difference

Algorithm:
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Laser-Only Results:  Laser-Only Results:  ΔZΔZ (Z = 0.3 m) (Z = 0.3 m)
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Simulation Calibration

Difference

Algorithm:

    C. Rudolf von Rohr
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Ideal Case Realistic Case
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♦ Using ΔX in central Z slice (Z = 5.0 m) as an example (preliminary)

♦ General shape/magnitude of correction obtained in realistic case, but 
some discrepancies in corners

♦ Likely need more tracks (only used 1,000 cosmics here for realistic 
case) and to throw out low-weight contributions from track pairs


